

$$[A] \frac{5A}{6}$$

[C]
$$\frac{A}{2}$$

$$[\mathbf{B}]$$
 $\frac{6A}{5}$

[A]
$$\lambda \propto n^{1/2}$$

[C]
$$\lambda \propto n$$

[B]
$$\lambda \propto n^{-1/2}$$

$$\int_{\mathbb{R}^n} \left[D \right] \quad \lambda \propto n^{-1}$$

3. In an experimental observation of the photoelectric effect, the stopping potential was plotted against the incident light frequency as shown in the figure below : আলোকবৈদ্যুতিক পৰিঘটনাৰ এটা পৰীক্ষণত ৰোধক/বিভৱ আৰু আপতিত পোহৰৰ কম্পনাংকৰ মাজৰ লেখচিত্ৰ তলত দিয়া ছবিৰ দৰে দেখা গ'ল:

or on the different If the work function of the metal is given by ϕ_0 , the angle α is given by যদিহে ব্যৱহৃত ধাতুৰ কাৰ্য ফলন φο হয়, α কোণৰ মান হ'ব [A] $\alpha = \tan^{-1}\left(\frac{n}{e}\right)$ [B] $\alpha = \tan^{-1}\left(\frac{e}{h}\right)$ [C] $\alpha = \tan^{-1}\left(\frac{\phi_0}{e}\right)$ [D] $\alpha = \tan^{-1}\left(\frac{e}{h}\right)$

$$[A] \quad \alpha = \tan^{-1} \left(\frac{h}{e}\right)$$

$$[B] \quad \alpha = \tan^{-1}$$

[C]
$$\alpha = \tan^{-1} \left(\frac{\phi_0}{e} \right)$$

$$[D] = \alpha = \tan^{-1} \left(\frac{e}{\phi_0} \right)$$

(Here, h and e refer to Planck's constant and charge of electron respectively.) (ইয়াত h আৰু e যথাক্ৰমে প্লাংকৰ ধ্ৰুৱক আৰু ইলেক্ট্ৰনৰ আধান।)

CKE-2016/11-D

- 4. Consider the nuclei of 27 Al and 64 Cu. Which of the following statements is correct? ²⁷ Al আৰু ⁶⁴Cu নিউক্লিয়াছ দুটাৰ ক্ষেত্ৰত তলৰ কোনটো উক্তি শুদ্ধ?
 - [A] 64 Cu nucleus has greater volume but lower density than 27 Al nucleus. $^{64}\mathrm{Cu}$ নিউক্লিয়াছৰ আয়তন $^{27}\mathrm{Al}$ তকৈ বেছি কিন্তু ঘনত্ব $^{27}\mathrm{Al}$ তকৈ কম।
- ⁶⁴Cu nucleus has greater volume and higher density than ²⁷Al nucleus. $^{64}\mathrm{Cu}$ নিউক্লিয়াছৰ আয়তন আৰু ঘনত্ব দুয়োটাই $^{27}\mathrm{Al}$ তকৈ বেছি।
- ⁶⁴Cu and ²⁷Al nuclei have identical volumes and densities. ⁶⁴Cu আৰু ²⁷Al দুয়োটা নিউক্লিয়াছৰে আয়তন আৰু ঘনত্ব একে।
- ⁶⁴Cu nucleus has greater volume but identical density with ²⁷Al nucleus $^{64}\mathrm{Cu}$ নিউক্লিয়াছৰ আয়তন $^{27}\mathrm{Al}$ তকৈ বেছি কিন্তু দুয়োটা নিউক্লিয়াছৰে ঘনতু একে।
- (5) The half-life $T_{1/2}$ of a radioactive substance is 5 hours. The time after which 6/25% of the substance is left without getting decayed is এটা তেজদ্রিয় পদার্থৰ অধজীৱনকাল ($T_{1/2}$) 5 ঘণ্টা। কিয়ান সময়ৰ মূৰত পদার্থবিধৰ $6\cdot25\%$ অক্ষত অৱস্থাত ৰ'বগৈ ?
 - [A] 9-4 hours 9-4 ঘণ্টা
- 30 hours 30 ঘণ্টা

20 hours 20 घनी

- 15 hours 15 ঘণ্টা
- 6. The ratio of the binding energies of three nuclei is 1:4:9. If the ratio of their nuclear radii is 1:2:3, the nuclei in the decreasing order of the stability can be arranged as তিনিটা নিউক্লিয়াছৰ বন্ধন শক্তিৰ অনুপাত 1;4:'9. যদি নিউক্লিয়াছ তিনিটাৰ ব্যাসাধৰ অনুপাত 1:2:3 হয়, তেন্তে সৃষ্টিৰতাৰ হিচাবত বেছিৰ পৰা কমলৈ নিউক্লিয়াছ তিনিটা হ'ব
 - [A] Nucleus 1, Nucleus 2, Nucleus 3 निউक्रियाह 1, निউक्रियाह 2, निউक्रियाह 3
- [B] Nucleus 2, Nucleus 3, Nucleus 1 निউक्रियाह 2, निউक्रियाह 3, निউक्रियाह 1
- [C] Nucleus 2, Nucleus 1, Nucleus 3 निউक्रियाह 2, निউक्रियाह 1, निউक्रियाह 3

(D) TREDMI NOTE 8

E-2016/ A QUAD CAMERA

Nucleus 3, Nucleus 2, Nucleus 1

निউक्रियाह 3, निউक्रियाह 2, निউक्रियाह 1

G TYPOSK

7. Two glasses with identical volumes are filled with water to the half-way mark and are kept side by side. Two solid cubes made of the same metal are now dropped into the two glasses and both of them sink in the water. The first glass is completely filled now. The second glass is still $\frac{7}{16}$ the empty. The ratio of the surface areas of the cubes dropped into the first and the second glass is

সম্প্ৰায়তনৰ দুটা গিলাছ পানীৰে আধালৈকে ভৰ্তি কৰি ওচৰাওচৰিকৈ বৰা হ'ল। একে ধাতুৰে নিৰ্মিত দুটা গোটা ঘনক গিলাছ দুটাত পেলাই দিয়া হ'ল। ঘনক দুয়োটা গিলাছ দুটাৰ পানীত সম্পূৰ্ণৰূপে বুৰ যায়। এতিয়া প্ৰথম গিলাছটো সম্পূৰ্ণৰূপে ভৰ্তি হৈ পৰে কিন্তু দ্বিতীয় গিলাছটোৰ 7 অংশ খালী হৈয়ে বয়। প্রথম গিলাছটোত পেলোৱা ঘনকটোৰ পৃষ্ঠকালিৰ দ্বিতীয় গিলাছত পেলোৱা ঘনকৰ পৃষ্ঠকালিৰ সৈতে অনুপাত হ'ব

16:7 4A) [C] 2:1

(B) 8:1 [D] 4:1

8. Two vessels separately contain two ideal gases A and B at the same temperature. The pressure of A is twice that of B. Under these conditions, the density of A is found to be one and half times the density of B. The ratio of molecular weights of A and B is দুটা পাত্ৰত সুকীয়াকৈ একে উন্ধতাত দুবিধ আদৰ্শ গেছ A আৰু Bক ৰবা হৈছে। A-ৰ চাপৰ মান B-ৰ চাপৰ গুণ হয়, তেন্তে A আৰু B-ৰ আণৱিক মূলৰ দুগুণ। যদি উপৰোক্ত অৱস্থাসাপেকে, Aৰ ঘনত Bৰ ঘনত্বৰ $1\frac{1}{2}$

[D] 2

9. A given quantity of gas is taken from the state A to the state C reversibly by two paths, $A \to C$ directly and $A \to B \to C$ as shown in the figure below:

এক নিৰ্দিষ্ট পৰিমাণৰ গৈছ অৱস্থা A-ৰ পৰা অৱস্থা টেল পৰাৱৰ্ডনীয়ভাৱে দুটা পথ, A \rightarrow C আৰ A o B o Cৰে তলৰ ছবিত দৈৰ্থৰা ধৰণে লৈ ঘোৱা হ'ল :

During the process A > C, work done by the gas is 100 J and heat absorbed is 120 $A \to B \to C$, the work done by the gas is 80 J, the heat absorbed in $A \to C$, পথেৰে যাওঁতে গোছবিধে কৰা কাৰ্যৰ পৰিমাণ $100\,\mathrm{J}$ আৰু শোষণ কৰা তাপৰ মান $120\,\mathrm{J}$.

A o B o C প্রক্রিয়াত গেছে কৰা কার্যৰ পৰিমাণ 80 J হয়, শোষিত তাপৰ মান হ'ব VB 100 J

[A] 60 J

[C] 140 J

[D] 300 J (4)

1-26-4

10. A total charge Q is uniformly distributed over a long rod AB of length L as shown in the A total charge Q is uniformly distributed over a R-ing scalar Q is uniformly distributed over a R-ing scalar Q from the end R-ing figure below. The electric potential at the point Q lying at a distance $\frac{L}{Q}$ from the end R-ing R-in

Q পৰিমাণৰ মুঠ আধান L দৈৰ্ঘাৰ এভাল দীঘল দশু ABত ছবিত দেখুওৱা ধৰণে সুষমভাৱে বিতৰিত হৈ আছে A মূৰৰ পৰা $rac{L}{2}$ দূৰত্বত থকা O বিন্দুত বৈদ্যুতিক বিভৱৰ মান হ'ব

[A]

Qln3

- 11. A simple pendulum suspended from the ceiling of a stationary lift has time period T When the lift descends at uniform speed, the time period is Ti. When the lift descends with constant acceleration, the time period is T_2 . Which of the following is correct? এখন বৈ থকা লিফট্ৰ চিলিঙত ওলোমাই ৰখা এটা সৰল দোলকৰ দোলনকাল T_0 . যেতিয়া লিফট্খন তললৈ সুষম দ্রুতিৰে গতি কৰে, এই দোলনকাল T_1 আৰু যেতিয়া লিফট্খন সুষম ত্রণেৰে তললৈ গতি কৰে তেতিয়া দোলনকাল T_2 . তলৰ কোনটো শুদ্ধ ?

 V_1 [A] $T_0 < T_1 < T_2$

[B] $T_0 > T_1 > T_2$

- [C] $T_0 = T_1 < T_2$
- 12. A particle of mass M and charge q is moving in a circle of radius R with speed v, where u << speed of light. The ratio of magnetic moment of the particle to its angular

M ভবৰ q আধানযুক্ত এটা কণিকাই R ব্যাসাৰ্ধৰ এটা বৃত্তত v ক্ৰতিৰে ঘূৰি আছে। v ৰ মান পোহৰৰ বেগতকৈ বহুত কম। কণিকাটোৰ চুম্বকীয় শ্ৰামক আৰু কৌণিক ভববেগৰ অনুপাত হ'ব

13. Two thin convex lenses L_1 and L_2 with focal lengths 1 cm and 2 cm respectively are separated by a distance of 4 cm along their axis. An object is placed at a distance of 175 cm before the first lens. The ratio of the final image size to the object size is $1 \ {
m cm}$ আৰু $2 \ {
m cm}$ ফ'কাছ দৈৰ্ঘ্যৰ দুখন ক্ষীণ উত্তল লেনছ ক্ৰমে L_1 আৰু L_2 সিহঁতৰ অক্ষৰ দিশত $4 \ {
m cm}$ ব্যৱধানত ৰখা হৈছে। প্ৰথম লেনছ্বনৰ 1:5 cm সমুখত এটা বস্তু থোৱা হ'ল। বস্তুটোৰ অভিমটো প্ৰতিবিশ্ব আৰু বস্তুটোৰ প্ৰকৃত আকাৰৰ অনুপাত হ'ব

[D] 4

O REDMINOTE & EE-2016/1-D ALQUAD

COST

Cer-2016/1-D

14. The position of a particle as a function of time is given by $\vec{r}(t) = A\cos\omega t\hat{i} + B\sin\omega t\hat{j}$, where A and B are two real positive constants with A > B. The orbit of the particle

সময়ৰ ফলনৰ ৰূপত এটা কণাৰ অৱস্থানক এনেদৰে প্ৰকাশ কৰিব পাৰি : $\vec{r}(t) = A\cos\omega t\hat{i} + B\sin\omega t\hat{j}$, আৰু B দুটা ধনাত্মক বাস্তৱ ধ্ৰুৱক আৰু A > B. কণাটোৰ কক্ষপথক দেপুৱাৰ পৰা চিত্ৰটোৰ ধৰণ হ'ব

15. A metallic spherical ball of mass M is dropped into a liquid and after some time it reaches a terminal velocity of v. If another spherical ball of mass 8M made of the same metal is dropped into the same liquid, then its terminal velocity will be (assume the spheres to be uniformly dense)

M ভবৰ ধাতৃৰে গঠিত এটা গোলাকাৰ বল এবিধ জুলীয়া পদাৰ্থত এৰি দিলে কিছুসময়ৰ পাছত ই υ প্ৰান্তীয় বেগ আহৰণ কৰে। যদি 8M ভবৰ একে ধাতুৰে গঠিত আন এটা গোলাকাৰ বল একেবিধ জ্পীয়া পদাৰ্থত এবি দিয়া হয়, তেন্তে ইয়াব প্রান্তীয় বেগ হ'ব

16. Consider a star of one solar mass. If only light can escape from the surface of the star, then the ratio of the radius of the star to that of the sun is (consider the star to be spherical and uniformly dense. Escape velocity on the surface of the sun is approximately 600 km/s, speed of light = 3×108 m/s.)

ধৰা হ'ল এক সৌৰ ভবৰ এটা নক্ষত্ৰৰ পৃষ্ঠভাগৰ পৰা কেবল পোহৰহে আঁতৰি আহিব পাৰে। নক্ষত্ৰটোৰ ব্যাসাধৰ লগত সূৰ্যৰ ব্যাসাধৰ অনুপাত হ'ব (নক্ষত্ৰটো গোলাকাৰ আৰু সুষমভাৱে ঘন। সূৰ্যৰ পৃষ্ঠভাগত পলায়ন বেগ প্ৰায় 600 km/s, গোহৰৰ ফ্ৰন্ডি = 3×10⁸ m/s) [B] 10⁻⁴

(A) 4×10-6 [C] 4×10^2

[D] 100

Zahai [P.T.C

	B your P
17. The ratio of maximum to minimum resistance that can be obtained with N number of 1Ω resistors is	21. An ideal gas is expanding such that PT = constant. The coefficient of volume expansion of the gas is এবিশ আদৰ্শ গোছে এনেদৰে প্ৰসাধিত হয় যাতে PT = প্ৰৱন্ধ। গোছবিশ্ব আয়তন প্ৰসাধন তথাকে হ'ল
N টা 1Ω ব বোধকেবে পাব পৰা সৰ্বাধিক আৰু সৰ্বনিদ্ধ ৰোধৰ অনুপাত হ'ল $[A]$ N $[B]$ N^2	$[A] = \frac{2}{T}$ $[B] = \frac{3}{T}$
[C] 1 [D] ∞	
 18. A sphere has a constant electric potential V on its surface. If there are no charges inside the sphere, the potential at the centre of the sphere is এটা গোলকৰ পৃষ্ঠভাগত বৈদ্যুতিক বিভৱৰ মান V, য'ত V এটা ধ্ৰুৱক। যদি গোলকটোৰ ভিতৰত কোনো আধান নাই, গোলকটোৰ কেন্দ্ৰত বিভৱৰ মান হ'ব [A] V [B] V/8 [C] 0 [D] V/6 	22. Two infinitely long parallel wires carry the same current in opposite directions. If both these currents are doubled and the separation between the wires is also doubled, the force per unit length on each wire দুভাল অসীম দৈৰ্ঘাৰ সমান্তবাল তাৰে সনস্বিনাণৰ বিদ্যুত বিপৰীত দিশত প্ৰৱাহ কৰে। যদি তাৰ দুভালৰ বিদ্যুতপ্ৰৱাহ আৰু মাজৰ ব্যৱধান দুগুণ কৰি দিয়া হয়, দুইভাল তাৰৰ ওপৰত প্ৰতি একক দৈৰ্ঘাৰ বাবে প্ৰয়োগ হোৱা বল [A] gets doubled দুগুণ হ'ব [B] remains the same দুগুণ হ'ব [D] None of these
19. One end of a nichrome wire of length 2L and cross-sectional area A is attached to an end of another nichrome wire of length L and cross-sectional area 2A. If the free end of the longer wire is at an electric potential of 8·0 volts and the free end of the shorter wire is at an electric potential of 1·0 volt, the potential at the junction of the two wires is approximately 2L দৈৰ্ঘ্যৰ, A প্ৰছজ্মেনৰ অভাল Nichrome তাঁবৰ এটা মূৰ L দৈৰ্ঘ্যৰ, 2A প্ৰছজ্মেনৰ আন এভাল Nichrome তাঁবৰ লগত সংযোগ কৰা হ'ল। যদি দীঘল তাঁবভালৰ উনুক্ত মূৰটো 8·0 voltৰ নৈদ্যুতিক বিভৱ আৰু চুটি তাঁবভালৰ উনুক্ত মূৰটো 1·0 voltৰ নৈদ্যুতিক বিভৱত ৰখা হয়, দুয়োভাল তাঁবৰ সন্ধিনিশৃত নৈদ্যুতিক বিভৱ হ'ব [A] 2·4 V	(C) becomes that ত্ৰাধা হ'ব হুকুৰে এটাও নহয় আগা হ'ব হুকুৰে এটাও নহয় আগা হ'ব হুকুৰে এটাও নহয় হুকুৰ এটাও নহয় হুকুৰে এটাও ন
[C] 4.5 V [D] 6 V The focal length in air of a thin lens made of glass of refractive index 1.5 is l. When	[C] $U_{B^2} > U_{AB} > U_{A^2}$ 24. The equation of motion of a body is $\frac{dv(t)}{dt} = 9 - 3v(t)$, where $v(t)$ is the speed (in m/s) time t (in second). If the body was at rest at $t = 0$, then which of the following is correction of time t (in second). If the body was at rest at $t = 0$, then which of the following is correction of the second of the s
প্রতিস্বণাংক 1:5ৰ কাঁচেৰে নিমিত এখন ক্ষাণ খেলছৰ পাছত	ফতি (m/s), যদি বস্তুটো != 0 গৰ্মত হৈ [B] Initial acceleration is 9 m/s গ্ৰেষ্টিক ত্ৰণৰ মান হ'ব 9 m/s ²
(a) $\frac{1}{4}$ [B) $\frac{3l}{4}$ [D) $\frac{4l}{3}$ [D) $\frac{4l}{3}$ [D) $\frac{4l}{3}$	প্ৰান্তীয় ফ্ৰন্তিৰ মান হ'ব 3 m/s [C] $v(t) = 3(1 - e^{-3t})$ মূঠ মানি কৈইটা শুদ্ধ
Al QUAD CAMERA 6. Grands and	CEE-2016/1-D
10/,	

[A] x = 2y

x = y

[C] x = 2y + 1

[D] $x = \frac{y}{2}$

26. The initial velocity of a projectile is $(2\hat{i}+4\hat{j})$ m/s, where \hat{i} and \hat{j} are along horizontal and vertical directions respectively. For $g = 10 \text{ m/s}^2$, the equation of the trajectory will be প্রক্ষেপা এটাৰ প্রাবন্তিক বেগ হৈছে $(2\hat{i}+4\hat{j})$ m/s, য'ত \hat{i} আৰু \hat{j} ক্রমে অনুভূমিক আৰু উলয় দিশত আছে $g = 10 \text{ m/s}^2$ ৰ বাবে প্রক্ষেপ্যটোৰ গতিৰ সমীকৰণ হ'ব

[A] $y = 2x - 5x^2$

[B] $y = 2x - 2.5x^2$

 $[C] x = \frac{1}{2} \sqrt{y - 2x}$

[D] $x = \frac{1}{2}\sqrt{2y-5x}$

27. A shell of mass M is fired with a speed u at an angle θ with the horizontal such that it explodes into two equal fragments at the highest point of its trajectory. If one fragment falls vertically, the distance at which the other fragment falls from the point of projection will be

M ভবৰ বোনা এটা অনুভূমিকৰ সৈতে heta কোণ কৰি u বেগেৰে এনেদৰে প্ৰক্ষেপণ কৰা হ'ল যে প্ৰক্ষেপণৰ সর্বোচ্চ উচ্চতাত ই সমান সমান দুটা খণ্ডত বিস্ফোবিত হয়। যদি এটা খণ্ড বিস্ফোবণৰ পাছত উলম্বভাবে তলকৈ নামি আহে, তেন্তে আনটো খণ্ডৰ প্ৰক্ষেপণ বিন্দুৰ পৰা পৰি যোৱাৰ দূৰত্ব হ'ব

g

 $3u^2\sin 2\theta$

[D] $\frac{4u^2\sin 2\theta}{2}$

28. A mobile phone of mass 100 g falls from the hand of a person through the window of a train. The train is accelerating at 1 m/s² and just 20 seconds have passed since it has left the station from standstill. If the window is 2 m above the ground, with what kinetic energy the phone will hit the ground $(g = 10 \text{ m/s}^2)$?

এটা 100 g ভবৰ ম'বাইল ফ'ন এজন ব্যক্তিৰ হাতৰ পৰা চলন্ত ট্ৰেইনৰ খিবিকীৰে বাহিবলৈ সৰি পৰিল ট্ৰেইনখন $1 \, \mathrm{m/s^2}$ ছুৰণেৰে গতি কৰিছে আৰু ই ষ্টেচনৰ ছিৰ অবস্থাৰ পৰা যাত্ৰা কৰা মাত্ৰ $20 \, \mathrm{seconds}$ হৈছে। যদি বিবিকীখনৰ মাটিব পৰা উচ্চতা 2 m হয়, তেন্তে কিমান গতি শক্তিৰে ই মাটিত সুগা মাৰিব (g = 10 m/s²)?

[A] 11 Jan on moin to Mr. Pary . 1

[B] 22 J

33 J TV NOTE &

[D] 44 J

29. A box of mass 10 kg is placed near the rear end of a long flat trolley such that it is 2 m from the rear end of the trolley. The coefficient of friction between the box and the trolley surface is 0.2. Starting from rest, the trolley is given a uniform acceleration. of 3 m/s². How much distance the trolley will cover by the time the box fall off from the trolley $(g = 10 \text{ m/s}^2)$?

এখন দীঘল সমতল টুলীৰ ওপৰত 10 kg ভবৰ বাকচ এটা এলেদৰে ৰখা হৈছে যাতে ই টুলীৰ শেষৰ মূৰটোৰ গ্ৰা 2 m দূৰত্বত থাকে। ট্ৰণীৰ পৃষ্ঠ আৰু ৰাকচৰ মাজৰ ঘৰ্ষণ গুণাংক হৈছে 0·2. ছিৰ অৱস্থাত থকাৰ সময়ত ছুয়াৰ ওপৰত সুষম ত্বৰণ 3 m/s² প্ৰয়োগ কৰা হৈছে। ট্ৰুলীৰ পৰা ৰাক্চটো পৰি ঘোৱালৈকে টুলীখনে কিমান দূৰত্ব অতিক্ৰম কৰিব (g = 10 m/s²)? The Winds Getting win

[A] 2 m

[B] 4 m

6 m

[B] 4 m

30. A car is moving in a circular path of radius 450 m with a speed of 30 m/s. If the speed of the car is increased at a rate of 2 m/s², the resultant acceleration will be গাড়ী এখনে 450 m ব্যাসাধৰ বৃত্তাকাৰ পথ এছোৱাৰে 30 m/s ফুন্ডিৰে গতি কৰিছে। যদি গাড়ীখনৰ ফুন্ডি 2 m/s² হাৰত বৃদ্ধি পাম, তেন্তে লব্ধ ছবণৰ মান হ'ব [B] 2 m/s²

[A] 1.5 m/s²

[C] · 2·8 m/s²

[D] 3.5 m/s²

31. The motion of a body of mass 0.5 kg due to the application of a force is given as $x = 3t^2 + 4t + 5$, where x is in metre and t is in second. What is the work done by the force in the first 2 seconds?

 $0.5~{
m kg}$ ভবৰ বস্তু এটাৰ ওপৰত বল প্ৰয়োগ কৰাত ইয়াব গতিব সমীকবণ হ'ল $x=3t^2+4t+5,\ {
m a}$ 'ড x মিটাৰত আৰু কে ছেকেণ্ডত প্ৰকাশ কৰা হৈছে। প্ৰথম 2 ছেকেণ্ডত বল প্ৰয়োগৰ ফলত সম্পাদিত কাৰ্যৰ and the [B] 35 J পৰিমাণ কিমান হ'ব?

[A] 15 J

[D] 75 J

32. The rope of a kite is wound around a hollow cylinder of mass 200 g and radius 5 cm. If the kite experiences a pull of F = 1 N, what will be the linear acceleration of the rope? এখন চিলাৰ ৰহীভালৰ আনটো মূৰ 5 cm বাাসাধ আৰু 200 g ভবৰ এটা ফোপোলা চুডাৰ ওপৰত মেৰিয়াই ৰখা হৈছে। যদি চিলাৰনে F=1 N বলৰ টান অনুভব কৰে, তেন্তে বছীভালত সৃষ্টি হোৱা বৈধিক ছৰণৰ মানু The party of the p [B] 10 m/s² কিমান হ'ব?

M 5 m/s2

are other post

gov of high six and

[D] None of these হুহুতৰ এটাও নহয়

CEE-2016/1-D

rolls down and ν' when it slides down. The value of ν/ν will be rolls down and ν' when it slides down. The value of ν/ν হয়, যেতিয়া ই ঘূর্ণন গতিবে আৰু বেগ ν হয়, যেতিয়া ই কেবল পিছলি আহে। ν/ν' ৰ মান হ'ব আৰু বেগ ν' হয় যেতিয়া ই কেবল পিছলি আহে। ν/ν' ৰ মান হ'ব	তিনিভাল সমদৈৰ্ঘাৰ দণ্ড সংযোগ কৰি এটা সমবাহ ক্ৰিভূজ গঠন কৰা হৈছে। ইয়াৰে দুভাল দণ্ড অংক্ৰেণৰ নামকৰ
(A) $\sqrt{\frac{5}{7}}$	স্থানিক প্রসাবণ গুণাংক হৈছে মে , বাদ সকলো ভবভাতে অভুলতোৰ সভাতা নালে
[C] $\sqrt{\frac{3}{5}}$	তাৰ খোন মন হ'ব প্ৰায় $lpha_1/lpha_2$ ৰ মান হ'ব প্ৰায়
34. A rocket is launched vertically from the surface of the earth with an initial vertical ve	$[A]$ $= 1$ $[B]$ $= \frac{1}{2}$
what will be the maximum height attained by the rockets	ID1 2
আটা ৰকেট ভূ-পৃষ্ঠৰ পৰা উলম্থ দিশত এনেদৰে নিক্ষেপ কৰা হৈছে যে প্ৰক্ষেপণৰ সময়ত ইয়াৰ বেগ বেগৰ এক-তৃতীয়াংশ হয়। যদি বায়ুমণ্ডলৰ ৰোধ অবজ্ঞা কৰা হয়, তেন্তে ৰকেটটোৰে সৰ্বোচ্চ কিমান	5000) ·
উৰ্ধ্বগমন কৰিব ? [A] 432 km [B] 660 km	38. A cylinder of volume V contains a mixture of 8 g of oxygen, 14 g of nitrogen and 22 g of carbon dioxide at absolute temperature T. The pressure of the gas mixture will be
[C] 796 km	(R is universal gas constant)
5. A rocket is fired from the earth to the moon. The distance between the earth a moon is r and the mass of the earth is 81 times the mass of the moon gravitational force on the rocket will be zero when its distance from the moon in the moon is r and the moon in the	na the পৰম উষ্ণতাত সোমাই আছে। গেছ মিশ্রসটোৰ লগাৰ গাৰেন। বিষয় কৰিব। বিষয় কৰ
ভূ-পৃষ্ঠৰ পৰা চন্দ্ৰলৈ এটা ৰকেট নিক্ষেপ কৰা হৈছে। পৃথিৱী আৰু চন্দ্ৰৰ মাজৰ দূৰত্ব হৈছে দু আৰু পৃষ্টি চন্দ্ৰৰ ভৰৰ 81 গুণ। ৰকেটটোৰ ওপৰত মহাকৰ্ষণিক বল শূন্য হোৱাৰ সময়ত চন্দ্ৰৰ পৰা দূৰত্ব হ'ব	$[A] = [A] = \frac{2RI}{2V}$ $[D] = 2V$
	IDI TAL
$[A] = \frac{r}{8}$	
[D] None of these	
(C) <u>12</u> ইহঁতৰ এটাও নহয়	Sold with SONAR operating at a frequency of 42 key seed of sound is
A vessel contains oil (density 0.8 g/cm ³) over mercury (density 13.6 g	
A homogeneous sphere floats with half volume immersed in mercury and the of in oil. What will be the density (in g/cm ³) of the material of the sphere?	
এটা পাত্ৰত পাৰাৰ (ঘনত্ব 13.6 g/cm ³) ওপৰত তেল (ঘনত্ব 0.8 g/cm ³) বিয়পি আছে	the submarket প্ৰথম কৰণ কৰিছি তৰংগবিশিষ্ট SONAR মন্ত্ৰ সংযোগ কৰি বৰণ তৰংগৰ এই কৰণ কৰিছিল কৰ
ধাতৃৰ বল মিশ্ৰণটোত এনেদৰে উপঙি আছে যাতে বলটোৰ আধা আয়তন পাৰাৰ মাজত আৰু আৰ্	এটা সুষ্ট 72 km/hr বেণেৰে জাহাজখনৰ ফাললৈ আহি আছে। খাণ নাম তৰংগৰ কম্পনাংক কিমান হ'ব? আমজা ছাবমেৰিনত খুদ্দা খাই ঘূৰি অহাৰ পাছত জাহাজখনে সংগ্ৰহ কৰা শুদ্দ তৰংগৰ কম্পনাংক কিমান হ'ব?
তেলৰ ভিতৰত সোমাই আছে। বলটোৰ ঘনত্ব (g/cm ³) কিমান হ'ব?	B 42 kHz
[A] 7·2	[A] 40·6 kHz
[C] 10.4 [D] None of these	[C] 43·2 kHz [D] 44·3 kHz
ইহঁতৰ এটাও নহয়	CI CONTRACTOR CONTRACT

CEE-2016/1-D

3ε₀

191 0

$$[B] \quad \frac{1}{9} \frac{q}{\varepsilon_0}$$

5 9 18ε0

41. Two equal point charges of $1\,\mu\text{C}$ each are located at points (i+j+k) and k $(2\hat{i}+3\hat{j}-\hat{k})$ m. What is the magnitude of electrostatic force between them? দুটা 1 μC বিশিষ্ট বিন্দুসম আধান $(\hat{i}+\hat{j}+\hat{k})$ m আৰু $(2\hat{i}+3\hat{j}-\hat{k})$ m ছানত অবস্থান কৰি সৈছে । সিং দুটাৰ মাজৰ বৈদ্যুতিক স্থিতি বলৰ মান কিমান হ'ব?

[A] 10⁻³ N

[¢] 10⁻⁶ N

42. Three infinite long plane sheets of uniform charge densities $\sigma_1 = -50.5 \sigma_2 = +20$ and σ_3 = 3 σ are placed parallel to each other as shown in the figure below. The electric field at point P will be

তিনিখন অসীমলৈ ব্যাপ্ত থকা সুষম আধান ঘনত্বিশিষ্ট পাত য'ত σ_1 = –5 σ , σ_2 = +2 σ আক চিত্ৰত দেবুৱা ধৰণে সজাই ৰখা হৈছে। P বিন্দুত বিদ্যুত ক্ষেত্ৰৰ মান হ'ব

EE-2016/1-D

$$\mathcal{L}[D] = \frac{3\sigma}{\varepsilon_0} \hat{j}$$

$$[D] = \frac{7\sigma}{2\varepsilon_0} \hat{j}$$

<u>-5σ</u>; REDMI NOT€5/8

[A] 0·1 Ω ICV 0.4 Ω

[D] 0·8 Ω

A battery of e.m.f. 12 V and internal resistance 0.5 Ω is charged by a battery charger A battery of charge Ω the hottom during a series resistance of 11.5 Ω . What is the which sarphy using a series reterminal voltage of the battery during charging?

term 12~V বিদুংচালক বল আৰু $0.5~\Omega$ অন্তৰ্জী বোধৰ বিদুংকোষক 132~V প্ৰত্যক্ষ প্ৰবাহ আৰু $11.5~\Omega$ ^{এটা} প্ৰেণীবন্ধ ৰোধবিশিষ্ট কোষ আহিতকৰণ যদ্ৰৰ সহায়েৰে আহিত কৰা হৈছে। আহিতকৰণৰ সময়ত কোষ্টোৰ প্ৰান্তীয় বিভব কিমান হ'ব? CALL C

[A] 14 V

[B] 15 V

16 V

[D] :: 17: V

45. A heating coil of resistance $100\,\Omega$ takes 100 seconds to boil certain amount of water, A nearing coil is connected in series with the heating coil, then the time is required to boil the water is t_s , while t_p time is required to boil the same amount of the time is required to boil the water is t_s . required to boil the water is t_g , while t_p time is required water if the coils are connected in parallel. What will be $\frac{t_s}{t_p}$?

কোনো নিৰ্দিষ্ট পৰিমাণৰ পানী উতুলাবলৈ এডাল 100 Ω ৰোধবিশিষ্ট তাপীয় কুণ্ডলীক 100 ছেকেণ্ড সমগ্ৰ প্রয়োজন। কণ্ডলীডালব লগত শ্রেণীবদ্ধ সজ্জাত আন এডাল একেধবণৰ তাপীয় কণ্ডলী সংযোগ কবিলে একে পৰিমাণৰ পানী উত্তলাৱলৈ সাগে সময় ়া আনহাতে যদিহে কুণ্ডলী দুটা সমান্তৰাল সজ্জাত সংযোগ কৰিলে পানী

46. The slope of the graph of the frequency of incident light versus the stopping poten for a given metallic surface is segures and no the borns. It was in

কোনো ধাতৃপৃষ্ঠত আপতিত পোহৰৰ কম্পনাকে আৰু stopping potentialৰ মাজৰ লেখৰ চাল হ'ব া পাড়সূহত আপাতত পোহৰৰ কশ্যনাকে আৰু stopping potentialৰ মাজৰ লোখৰ চাল হ'ব | h | AB| h | e

 $[C] = \frac{e^{C}}{h}$ $[C] = \frac{e^{C}}{h}$ [C]

Y = 0 for A = 1, B = 1, C = 1= 1 for A = 0, B = 0, C = 0Y = 1 for A = 1, B = 0, C = 0

The logic gate in the question-marked box will be প্রশ্নবোধক চিহ্নবিশিষ্ট বাকচটোত থকা লজিক গেটখন হ'ব

[A] OR

(B) AND

[C] NOR

[D] NAND

- 48. Choose the incorrect statement(s) : অশুদ্ধ উক্তিটো/উক্তিবোৰ বাচি উলিওৱা :
 - Skywave communication takes place at frequency above approximately 30 MHz আকাশী তৰংগ দূৰসংযোগ সাধাৰণতে 30 MHzতকৈ অধিক কম্পনাংক তৰংগৰ দ্বাৰা স
 - Amplitude Modulated (AM) Radio communication is mostly done by ground war propagation. বিস্তাৰ কলিত (AM) বেতাৰ সংযোগ মুখ্যতঃ ভূমিগত তৰংগৰ দ্বাৰা সম্পন্ন কৰা হয়।
 - (iii) F layer of ionosphere is mostly responsible for skywave propagation. আকাশী তৰংগ অগ্ৰগমনৰ বাবে আয়'ন'ন্ফিয়াৰ ৮ তৰপ মুখ্যত: ব্যৱহৃত হয়।
 - Bandwidth required for transmission of video signal is generally more than audit (iv)

ভিডিঅ' সংকেত প্ৰেৰণৰ বাবে সাধাৰণতে অভিঅ' সংকেততকৈ অধিক পটিবেধৰ প্ৰয়োজন হয়

[A] (i) [B] (i) and (আৰু) (iii)

(ii) and (আৰু) (iii) [e]

[D] (iii) and (আ季) (iv)

49. A bullet of mass 20 g moving with a speed of 100 m s⁻¹ enters a heavy wooden block and stops after a distance of 50 cm. The average resistive force exerted by the block on

 $100~{
m m~s^{-1}}$ গতিবেগ থকা, $20~{
m g}$ ভৰৰ বুলেট এটাই ডাঠ কাঠৰ টুকুৰা এটাত প্ৰৱেশ কৰি $50~{
m cm}$ যোৱা পিছত ৰৈ যায়। কাঠৰ টুকুৰাটোৰে কাৰ্যকৰী কৰা গড় প্ৰতিৰোধ বল হ'ব

100 TOMENOTE

[B] 10000 N

CO200 NOUAD CAMERA

[D] 500 N

ball of mass m is thrown upward with a velocity v. The air exerts an average resisting A ball of The velocity with which the ball returns to the thrower is force p বল এটা u গতিবেগত ওপবলৈ দলিয়াট দিয়া হ'ল। বল এটা ৮ গতিবেগত ওপৰলৈ দলিয়াই দিয়া হ'ল। বায়ুৱে কাৰ্যকৰী কৰা প্ৰতিৰোধ বল

m 544 জনলৈ ঘূৰি অহাৰ গতিবেগ হ'ব

mg mg - F

wooden blocks are moving on a smooth horizontal surface such that the block Two wooden plocks are inoving on a smooth horizontal surface such that the block having mass m remains stationary with respect to block of mass M as shown in the figure below. The magnitude of the applied force P is দেশুওৱা ধ্বণে দুভোগৰ কাৰ্চৰ টুকুৰা মিহি অনুভূমিক তলত এনেকৈ গতি কৰিছে যে m ভবৰ টুকুৰাটো কৰিব কৰিব সাপেকে ছিব অৱস্থাত আছে। প্ৰয়োগ কৰা বল D.ৰ প্ৰিমাণ ম'ৰ

ছাবত সাত্ৰ ক্ৰিবাটোৰ সাপেকে হিৰ অৱস্থাত আছে। প্ৰয়োগ কৰা বল P-ৰ পৰিমাণ হ'ব

[B] mgcosβ

 $(M+m)g\tan\beta$

52. A circular plate of uniform thickness has a diameter of 56 cm. A circular portion of diameter 42 cm is removed from one edge of the plate as shown in the figure below. The position of centre of mass of the remaining portion is এখন সুষম বেধবিশিষ্ট ভূবণীয়া পাতৰ বাাস 56 cm. চিত্ৰত দেপুওৱা ধৰণে পাতখনৰ কামৰ পৰা 42 cm বাাসৰ

দূৰণীয়া টুকুৰা এটা আঁতবাই পেলোৱা হ'ল। বাকী টুকুৰাটোৰ ভৰকেন্দ্ৰ হ'ব

- 7 cm to the left of the centre of plate পাতখনৰ কেন্দ্ৰৰ পৰা 7 cm বাঁওফালে
- 8 cm to the left of the centre of plate পাতখনৰ কেন্দ্ৰৰ পৰা 8 cm বাঁওফালে
- 9 cm to the left of the centre of plate পাতখনৰ কেন্দ্ৰৰ পৰা 9 cm বাঁওফালে
- [D] 10 cm to the left of the centre of plate পাতখনৰ কেন্দ্ৰৰ পৰা 10 cm বাঁওফালে

53.	A solid cylinder of mass m and radius r rolls without slipping down an inclined plane of length l and height h . The speed of its centre of mass when the cylinder reaches the
	bottom is a টা m ভবৰ আৰু r ব্যাসাৰ্ধৰ গোটা চুঙা এখন l দৈখা আৰু h উচ্চতাৰ এচলীয়া সমতলত পিছল নোখোৱাকৈ তললৈ বাগৰি যাবলৈ দিয়া হ'ল। চুঙাটো নিম্নাংশত উপস্থিত হওতে ভৰকেন্দ্ৰৰ বেগ হ'ব
	IA) Janh

[C] √2gh

54. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of angular momentum of the projectile about an axis of projection when the particle is at maximum height h is m ভবৰ কুণা এটা v গতিবেগেৰে অনুভূমিকৰ পৰা 45° কোণত প্ৰক্ষিপ্ত কৰা হ'ল। কণাটোৰ সৰ্বোচ্চ উচ্চতা ho প্রক্ষেপৰ কৌণিক ভৰবেগৰ পৰিমাণ প্রক্ষেপণ অক্ষত হ'ব

[A] $m(2gh^3)$

√[B] 0

 $-mv^3$ [C] $4\sqrt{2}g$

55. Two glass plates are separated by water and the distance between the plates is 0.10 mm. If the surface tension of water is 75 dynes per cm and area of each plate wetted by water is 8 cm², the force applied to separate the two plates is দুখন গ্লাছৰ পাত পানীৰ দ্বাৰা পৃথক কৰি ৰখা হ'ল আৰু দুয়োখন পাতৰ মাজৰ ব্যৱধান 0·10 mm. যদি পানীৰ পৃষ্ঠটান $75~{
m dynes/cm}$ আৰু প্ৰত্যেকখন পাতৰ পানীৰে তিতা অংশৰ কালি $8~{
m cm}^2$ হয় দুয়োখন পাত পৃথক কৰিবলৈ প্ৰয়োগ কবা বল হ'ব

[A] 1.2 × 10⁵ dynes

[B] 1.6×10^4 dynes

[C] 1.6 × 10⁵ dynes

[D] 1.2×10^4 dynes

56. A steel wire is suspended vertically from a rigid support. When the wire is loaded with a weight in air, it extended by x_a . When the weight is completely inside the water, the extension becomes x_w . The relative density of the material of the weight is using তীখাৰ তাৰ উলয়ভাবে দৃঢ় আধাৰত ওলমাই ৰখা হ'ল। যেতিয়া তাৰডালত বায়ুত ভাৰ এটা ব্ৰৈজ্ঞা দিয়া হয়, তাৰডাল x_{lpha} সম্প্ৰসাৰণ ঘটে। যেতিয়া ভাৰটো সম্পূৰ্ণৰূপে পানীৰ ভিতৰত সোমোৱাই দিয়া হয়, তাৰডালৰ সম্প্রসাৰণ হয় x_{w} . ভাৰটোৰ উপাদানৰ আপেক্ষিক ঘনত্ব হ'ব

 $[D] = \frac{x_a}{x_a - x_w}$

O REDIMENSAGES 2-2010 ALQUAD CAMERA 16

ILI-CHORAGE

57. The steel petrol tank of a car is filled with 30 litres of petrol at 10 °C. If α_{steel} is 24×10^{-6} /°C and γ_{petrol} is 9.9×10^{-1} /°C, the overflow of petrol at 40 °C is

গাড়ী এখনৰ তীখাৰ পেট্ৰল টেংক এটাত 30 লিটাৰ পেট্ৰল 10°Cত ভৰোৱা হ'ল। যদি a _{steel} = 24×10⁻⁶/°C আৰু γ _{petrol} = 9·9×10⁻⁴/°C, তেন্তে 40 °C ত পেটুল উপটি পৰিব

[A] 0.8262 litre

[B] 0.8694 litre

[C] 1.8532 litres

[D] 1.8416 litres

58. An observer moves towards a stationary source of sound with a velocity one-fourth of the velocity of sound. The percentage increase in apparent frequency is এজন পর্যবেক্ষকে এটা ছিব শব্দৰ উৎসৰ ফালে শব্দৰ এক-চতুৰ্থাংশ বেগত গতি কৰিছে। আপাত কম্পনাংকৰ

[A] 20%

图 25%

[C] 10%

[D] 30%

59. Two bulbs are connected in series across a potential difference of 440 volts. The wattage of bulbs are 100 W and 60 W of rated voltage 220 volts. Which bulb will work at above the rated voltage?

দুটা বাৰ শ্ৰেণীবন্ধ স্বজাত 440 V বিভৱ ভেদৰ সৈতে সংযোগ কৰা হ'ল। বান্ধ দুটাৰ বৈদ্যুতিক ক্ষমতা নিৰাপিত বিভৱ 220 Vo 100 বাট আৰু 60 ৱাট। কোনটো বাজে নিৰূপিত বিভৱৰ উপৰিত কাম কৰিব?

[A] 100 W [1751] Place 1 [B] 60 W - 60 বাট

100 বাট 🧚

[C] Both 100 W and 60 W 100 বাট আৰু 60 বাট দুয়োটাই

[D] None of the bulbs, ৰান্ত দুটাৰ এটাও নকৰে 💮 🚎

60. Two identical cells when connected in series or parallel, supply same amount of current through an external resistance of 10 Ω . The internal resistance of each cell is দুটা অভিন্ন কোষ যেতিয়া শ্ৰেণীবন্ধ বা সমান্তবালভাৱে সংযোগ কৰা হয়, 10 Ω বাহ্যিক ৰোধ এটাৰ মাজেদি সম-পৰিমাণৰ প্ৰবাহ যোগান ধৰে। প্ৰত্যেক কোষৰ আভ্যতনীণ ৰোধ হ'ব 20 (BL " 6

[A] 2Ω

[D] 10 Ω

[C] 8Ω 61. A standard resistance coil marked 2 Ω is found to have a resistance of 2:118 Ω at 30 °C The temperature at which marking is correct is (temperature coefficient of resistance of the material of the coil is 0.0042 per degree Celsius) 2 Ω চিহ্নিত এটা মানক ৰোধক কুণ্ডলীৰ 30°Cত ৰোধ পোৱা গ'ল 2·118 Ω. কি উষ্ণতাত চিহ্নিত কৰা ও

শুদ্ধ হ'ব ? (কুণ্ডলীটোৰ পদাৰ্থৰ ৰোধৰ উন্মতা গুণাকে 0 0042 per degree Celsius) city of pro Associ

[A] 15.05 °C

[B] 15.07 °C

[C] 15:09 °C

[D] 15.06 °C

CEE-2016/1-D

17

[A] 100 Hz

[B] 60 Hz

[C] 50 Hz

[D] 120 Hz

71. Imagine a new planet having the same density as that of the earth but it is 3 times bigger than the earth in size. If the acceleration due to gravity on the surface of the earth is g and on the surface of the new planet is g', then পৃথিৱীতকৈ তিনিগুণ ডাঙৰ ব্যাসাৰ্ধৰ এটা কাল্পনিক গ্ৰহৰ ঘনত্ব পৃথিৱীৰ সৈতে একে। যদিহে পৃথিৱী পৃষ্ঠত মাধ্যাকর্ষণিক ত্বন g হয় আৰু কাল্পনিক গ্রহৰ পৃষ্ঠত মাধ্যাকর্ষণিক ত্বন g' হয়, তেন্তে

[B] g' = 27g

72. Two straight and narrow slits 0.3 mm apart are illuminated by a monochromatic source of wavelength 5.9×10^{-7} m. Fringes are obtained at a distance of 0.30 m from the slit. The width of the fringe is

 $0.3~{
m mm}$ দূৰত্বত থকা দুটা পোন আৰু ঠেক সমান্তৰাল ছিন্তক $5.9 imes 10^{-7}~{
m m}$ তৰংগদৈৰ্ঘ্যৰ পোহৰৰ উৎসৰ দ্বাৰা আলোকিত কৰা হ'ল। ছিদ্ৰ দুটাৰ পৰা 0-30 m দূৰত্বত সমৰোপণ পটিৰ সৃষ্টি হলে পটিৰ বেধ হ'ব

5·9×10⁻⁴ m

[C] 2·95×10⁻⁶ m = +40.

[D] 2.95×10⁻⁵ m

73. For a transistor in common-emitter configuration, the current amplification factor is 0.8. The change in base current when the collector current changes by 24 mA is সাধাৰণ নিৰ্গমক সজ্জাত থকা ট্ৰেনজিষ্টৰ এটাৰ প্ৰবাহ পৰিবৰ্দ্ধন গুণক 0.8. সংগ্ৰাহক প্ৰবাহৰ পৰিবৰ্তনৰ মা 24 mA হ'লে, ভূমি প্ৰবাহৰ পৰিৱৰ্তনৰ মান হ'ব

[A] 4·8 mA

-[B] 6 mA

[C] 8 mA

[D] 24 mA

(C) REDMINORE 8 E-2016/2 AT QUAD CAMERA 20

with the

destroit

74. The unit vector perpendicular to the plane of $\vec{A} = \hat{i} - 3\hat{j} - \hat{k}$ and $\vec{B} = 2\hat{i} + \hat{j} - \hat{k}$ is $\vec{A}=\hat{i}-3\hat{j}-\hat{k}$ আৰু $\vec{B}=2\hat{i}+\hat{j}-\hat{k}$ ৰ সমতলৰ লম্বদিশৰ একক ভেক্টৰ হ'ল

(B) $\frac{2}{\sqrt{66}}\hat{i} - \frac{1}{\sqrt{66}}\hat{j} + \frac{8}{\sqrt{66}}\hat{k}$

[C] $\frac{4}{\sqrt{66}}\hat{i} + \frac{1}{\sqrt{66}}\hat{j} + \frac{7}{\sqrt{66}}\hat{k}$

75. Two parameters a and c are measured experimentally and used to determine a quantity V given by $V = \frac{\sqrt{3}}{2} a^2 c$. If the percentage errors in the measurement of a and c are respectively 1 and 2, the percentage error in the measurement of V is aটা পৰীক্ষাত a আৰু c^{-4} মান নিৰ্ণয় কৰি $V=\frac{\sqrt{3}}{2}a^2c$ বাশিৰ মান নিৰ্ণয় কৰা হৈছিল। যদি a আৰু c^{-4} মান নিৰ্ণয়ত হোৱা ক্ৰটি শতাংশ যথাক্ৰমে 1 আৰু 2 হয়, V ৰাশিব মান নিৰ্ণয়ত হোৱা ক্ৰটি শতাংশ হ'ব

विक्री के किन अपूर्ण निर्मातिक अस्ति । किन्य कार्य

76. An object of mass 4 kg is attached to a spring which is fixed at one end on a rigid support and the mass-spring system is kept on a frictionless table. The object is allowed to execute simple harmonic motion along x-direction. If the force constant of the spring is 10 N/m and the spring is stretched initially a distance of 5 cm, the total energy stored in the system is এটা মূৰ দৃঢ়ভাৱে বান্ধি ৰখা স্প্ৰিং এভালৰ আনটো মূৰত 4 kg ভৰৰ বস্তু এটা বান্ধি ৰখা হৈছে। এই ভৰ-স্প্ৰিং ব্যৱস্থাটো ঘৰ্ষণহীন মেজৰ ওপৰত ৰখা হৈছে। বস্তুটোৱে x-দিশত সৰল পৰ্যানৃত গতি কৰে। তিলুংডালৰ গ্ৰুহক $10~{
m N/m}$ আৰু তিপ্ৰতোলৰ আৰম্ভণিতে প্ৰসাৰণ $5~{
m cm}$ হ'লে ব্যৱস্থাটোত সঞ্চিত মুঠ শক্তিৰ পৰিমাণ হ'ব

[B] 125 J

PTX

Class No

[C] 1·25 J

[D] 12·5 J

- [A] zero (*[ना)
- [B] 80 J

- [D] 4 J
- 78. An artificial bone of uniform cross-section has the Young's modulus 140 GPa. One end of this cylindrical bone of radius 10 mm and length 50 cm is held in a rigid support A force of magnitude 10 kN is applied perpendicularly to the end face at the other end The elongation of the bone is

সুষম প্ৰস্থাচেদৰ এক কৃত্ৰিম হাড়ৰ ইয়ঙৰ গুণাংক মান 140 GPa. 10 mm ব্যাসাধৰ আৰু 50 cm দীঘৰ চুঙাৰ আকাৰৰ এই হাড়ভালৰ এটা মূৰ সুদূঢ়কৈ বাজি ৰখা হৈছে আৰু আনটো মূৰত 10 kN মানৰ বল প্ৰস্থচ্ছেদৰ লম্বভাৱে প্ৰয়োগ কৰা হৈছে। হাড়ডালৰ প্ৰসাৰণৰ মান হ'ল

- [A] 1-1-1 mm

- 79. A particle moves in the xy-plane under the action of superposition of two simple harmonic vibrations. The resultant displacement of the particle is governed by the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab} \cos \alpha = \sin^2 \alpha \text{ where } \alpha = 0.111$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab} \cos \alpha = \sin^2 \alpha$$

where a, b and α are constants. The particle trajectory y(x) is linear with a negative

দুটা সবল পৰ্যাবৃত্ত দোলনৰ অধ্যাৰোপণৰ বাবে কণিকা এটাই xy-সমতলত গতি কবে। কণিকটোৰ লব্ধ সৰণ

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{2xy}{ab} \cos \alpha = \sin^2 \alpha$$

a, b আৰু lpha দ্ৰুৱক। কণিকাটোৰ পথ y(x) খণাম্মক ঢালেৰে সৰলবৈথিক হ'ব, যেতিয়া (1. g(x) W

- [A] $\alpha = 2\pi$
- $\alpha = 1/2$
- $[B] \sim \alpha = \pi$
- [D] $\alpha = \pi/4$

O ALOUAD CAMERAL -2016/1-D

- 80. The maximum amplitude of the resultant wave due to linear superposition of two waves $y_1(x, t) = A \sin(kx \omega t)$ and $y_2(x, t) = A \sin(kx + \omega t)$ occurs at x values দুটা তবংগ $y_1(x,t)=A\sin(kx-\omega t)$ আৰু $y_2(x,t)=A\sin(kx+\omega t)$ অধ্যাবোপণৰ ফলত সৃষ্টি হোৱা তবংগৰ বিস্তাৰ সৰ্বাধিক হ'ব, যদিহে x-ৰ মানবোৰ হয় [A] $\frac{\pi}{k}, \frac{3\pi}{k}, \frac{5\pi}{k}, \dots$ [B] $0, \frac{\pi}{4k}, \frac{3\pi}{4k}, \dots$ [C] $\frac{\pi}{2k}, \frac{3\pi}{k}, \frac{3\pi}{2k}, \dots$ [D] $\frac{\pi}{2k}, \frac{3\pi}{2k}, \frac{5\pi}{2k}, \dots$

TOTAL B

- 81. A medium with refractive index n(ω), where ω is the angular frequency, is said to possess anomalous dispersion when $n(\omega)$ প্ৰতিসৰণাকে (ω -কৌণিক কম্পনাকে) এক মাধ্যমত পোহৰৰ বিচ্ছুৰণ অসংগত হ'ব, যদিহে
 - [A] $\frac{\partial n}{\partial \omega} > 0$
- $[B] \frac{\partial n}{\partial \omega} < 0$
- $\frac{\partial n}{\partial t} = 0$
- [D] None of these
- (82) In the given circuit, the value of current i2 is তলৰ বৰ্তনীটোত বিদ্যুত প্ৰৱাহ 1,4 মান হ'ব

- [A]. 1.0 A

- [D] : 0.2 A
- 83. Consider a system of N electrons. Upon exchange of a pair of electrons, the Coulomb N ইলেক্ট্রনৰ নিকায় এটা ধৰা হওক। এয়োৰ ইলেক্ট্রনৰ স্থানৰ সালসলনি হ'লে নিকায়টোৰ কুলায় বিভৱ potential of the system
 - [A] remains unchanged And
- [B] decreases by N/2 N/2 হাৰত কমিব
- সলনি নোহোৱাকৈ থাকিব [C] increases by N/2 N/2 হাৰত বাদিব
 - [D] decreases by (N-2)
- (N-2) হাৰত কমিব

23

90) The work function of copper is 4-7 eV. If ultraviolet light of wavelength 312 nm and intensity 1-0 W m ⁻² is directed on a copper plate, then in the detector // তামৰ কাৰ্য ফলন 4-7 eV. 312 nm তবংগদৈৰ্ঘ্য আৰু 1-0 W m ⁻² তীব্ৰতাৰ অতিবেঙুনীয়া পোহৰ তামৰ শ্লেটত আপতিত হ'লে সংসূচক যত্ৰত	Which of the following expressions has the same dimension as that of 'light-year'? [In the following expressions, h is Planck's constant, c is the velocity of light and G denotes Newton's gravitational constant.) ভাৰ কোনটো প্ৰকাশবাদিৰ 'যাত্ৰা' আলোকবৰ্থৰ মাত্ৰাৰ সৈতে আৰু? (ভলত দিয়া হোৱা প্ৰকাশবাদিবোৰত h, c আৰু G য়ে ক্ৰমে প্লাংকৰ জ্বৰু, গোহৰৰ বেগ আৰু নিউটনৰ মহাক্ৰানিক জ্বৰুক সৃচাইছে) [A] \[\begin{align*} \text{Gh} \\ \frac{Gh}{2\pic^3} \end{align*}
কোনো ফট'ইলেকট্ন ধৰা নপৰিব	The state of the s
	[C] $\sqrt{\frac{Gh}{2\pi c^5}}$ [D] None of these
[B] photoelectrons would be detected with maximum kinetic energy 0.7 eV ফট'ইলেক্ট্ৰন ধৰা পৰিব আৰু সৰ্বোচ্চ গতিশক্তি হ'ব 0.7 eV	Red allo 14
[C] photoelectrons would be detected but maximum kinetic energy is zero ফট'ইলেক্ট্ৰন ধৰা পৰিব কিন্তু সৰ্বোচ্চ গতিশক্তি শূন্য হ'ব	94. Two uniformly dense spherical balls of radius R and 2R are released simultaneously from identical heights. If both the balls hit the ground at the same time, then the ratio of densities of the balls, ρ _R : ρ _{2R} is (here, ρ _R is the density of the ball with radius R and ρ _{2R} is the density of the ball with radius 2R)
[D] photoelectrons would be detected with maximum kinetic energy 4-0 eV ফট'ইলেক্ট্ৰন ধৰা পৰিব আৰু সৰ্বোচ্চ গতিশক্তি হ'ব 4-0 eV	দুটা সুষ্ম ঘনত্তব, R আৰু 2R বাসাধিব গোলাকাৰ বল একেনময়তে সমান ওচিতাৰ বাবা আৰু ক্ষিত চূ আৰু
91. The missing one (?) in the following reaction is তলৰ বিক্রিয়াত নথকাটো (?) হ'ল ${}^9 \text{Be} + {}^4 \text{He} \rightarrow 3 {}^4 \text{He} + ? {}^1 \text{H}$	Port R আৰু 2R বাসাধৰ বল ঘটাৰ ঘনন্তক সূচাইছে। [A] 2:1 [B] 8:1 [C] 1:8 [C] 1:8 [D] Cannot be determined using the given information প্ৰসন্ত তথ্যৰ পৰা নিৰ্ণয় কৰিব নোৱাৰি
ј д] ⁻¹ Н [В] ⁻² Н	95. Consider two spherical planets A and B with radii R_A and R_B respectively. If $R_A = 2R_B$ 95. Consider two spherical planets A and B with radii R_A and V_{escape}^B are equal, then the
$[C] = \frac{1}{2} {}^{2}H$	and the escape velocities and B. 0.00 m is (consider A and B to be uniformly defiet)
The saturation current density of a p-n junction diode is 100 mA/m ² at 300 K. The voltage applied across the junction to cause a forward current density of 10 ⁵ A/m ² to flow is	धवा र न करम RA जान VB नमान रम, एउएड A जान DA पान पूर्व पूर्व पान Vescape नमान रम, एउएड A जान DA पान पूर्व पूर्व पान
flow is 300 K উষ্ণতাত এটা p - n জাংছন ডায়'ডৰ পৰিগৰ্ভিত প্ৰবাহ ঘনত্ব মান $100~\mathrm{mA/m^2}$. $10^5~\mathrm{A/m^2}$	(A আৰু B প্ৰোৰে শাৰ 1 : 4
অগ্ৰৱতী প্ৰবাহ ঘনত্তৰ বাবে জাংছনত প্ৰয়োগ কৰা বিভৱৰ মান হ'ব	to 1.2
[A] 0.36 V [B] 0.20 V (Constitution of the constitution of the con	[B] 1:4 [A] 1:2 [A] 1:2 [D] Cannot be determined using the given information given information of the second of the given information of the g
COO TREDMINOTE 8	27.
O ALQUAD CAMERA 26	CEE-2016/1-D;

A ball is released from a height h. It hits the floor below and keeps bouncing repeatedly until it comes to rest. If the coefficient of restitution of the head-on collision between the ball and the floor is e(e < 1), the total distance covered by the ball (vertically) from the point of its release to its rest position is given by

এটা বল h উচ্চতাৰ পৰা এৰি দিয়া হ'ল। তলৰ মজিয়াত খুন্দা খাই ই আকৌ ওপৰলৈ উঠে আৰু আকৌ তলাল নামি আহি মজিয়াত খুন্দা খাই ওপৰলৈ উঠা-নমা কৰি থাকে। এটা সময়ত বলটো মজিয়াত ছিৰ হৈ বৈ যায়। যদি বল আৰু মজিয়াৰ মাজৰ মুখামুখি সংঘাতৰ প্ৰত্যানয়ন গুণাংক e(e << 1) বুলি ধৰা হয়, বলটো এৰি দিয়াৰ পৰা মজিয়াত স্থিৰ হোৱালৈকে বলটোৱে উলম্বভাৱে অতিক্ৰম কৰা দূৰত্ব হ'ব

[A]
$$\frac{h(1-e^2)}{1+e^2}$$

[B]
$$\frac{h(1+e^2)}{1-e^2}$$

$$[C] \frac{h(1-e)}{1+e}$$

[D]
$$\frac{h(1+e)}{1-e}$$

97. M. S. Dhoni hits two cricket balls in the air in a T-20 match. Both the balls leave his bat at the same velocity but at different angles of 30° and 60° respectively. If one ignores air friction and wind velocity, which of the following statements is correct?

এম. এছ, ধোনীয়ে এখন T-20 বেলত দুটা ক্রিকেট বল ওপৰলৈ উঠাই প্রহাব কৰে। দুয়োটা বলেই ধোনীব (Angles are w.r.t. the horizon) বেটৰ পৰা একে বেগেৰে কিন্তু 30° আৰু 60° দুটা ভিন্ন কোণত ওলাই যায়। যদি ৰায়ুৰ ঘৰ্ষণ আৰু বতাহৰ বেগক উপেক্ষা কৰা হয়, তেন্তে তলৰ কোনটো মন্তব্য শুদ্ধ? (কোণসমূহ দিগন্ত সাপেক্ষে)

[A] The ball hit at 30° will travel higher and furtherer. য় 30° কোণত প্ৰহাৰ কৰা বলটো বৈছি গুপৰলৈ আৰু দূৰলৈ যাব। partitions to a great the case of the state of the state

Con the secretary or

- [B] "The ball hit at 60° will travel higher and furtherer," 60° কোণত প্ৰহাৰ কৰা বলটো বেছি ওপৰলৈ আৰু দূৰলৈ যাব।
- e was the second The ball hit at 60° will travel higher and the one hit at 30° will travel further. 60° কোণত প্ৰহাৰ কৰা বলটো বৈছি ওপৰলৈ আৰু 30° কোণত প্ৰহাৰ কৰা বলটো বেছি দ্ৰলৈ যাব।
- The Adjustic The ball hit at 60° will travel higher but both the balls will travel the same distance.

60% রেগ্র চারাম করা জলটার বেছি ওপরলৈ আৰু দুয়োটা বলেই সমান দূৰত্বত পৰিব।

-2016/1-D

98. Consider three circular discs each with radius R and mass M. The first disc has uniform mass per unit area, the second disc has mass per unit area a r and the third disc has mass / area a left. Here, r is the distance from the centre of the disc. Which of these discs has the lowest moment of inertia about an axis passing through the centre and perpendicular to the plane of the disc? (Or in other words, which of the discs is the easiest to rotate about the given axis?)

R ব্যাসাধৰ আৰু M ভৰবুত তিনিখন বৃত্তাকাৰ থালিব কথা ধৰা হ'ল। প্ৰথমখন থালিৰ ভৰ/কালি সুখম, ন্ধিতীয়খন থালিব ডব/কালি ∞ r আৰু তৃতীয়খন থালিব ভৰ/কালি ∞ 1, য'ত r থালিব কেন্দ্ৰৰ পৰা দ্বস্থ। কোনখন থালিব কেন্দ্ৰৰ মাজেৰে উলম্ব দিশত পাৰ হৈ যোৱা অক্ষমাপেকে জড়ল্লামকৰ মান নিম্নতম? (অন্যাৰ্থত, কোনখন থালি প্রদত্ত অক্ষসাণেকে আটাইতকৈ সহজে ঘূৰাব পাৰি?)

- [A] First disc প্রথম থালি
- [B] Second disc দ্বিতীয় থালি
- Third disc তৃতীয় থালি
- [D] All of them have equal moment of inertia গোটেইকেইখন থালিৰ জড়-ভ্ৰামকৰ মান সমান

s XI

RT

P.T.

og. A charge q sits at the back corner of a cube as shown in the following figure : a আধানযুক্ত এটা আধান এটা যুনুহৰ এটা শীৰ্ষবিশৃত তলৰ চিত্ৰত দেৰ্ওৱা ধৰণে ৰখা হৈছে:

What is the electric flux through the shaded side? চিত্ৰত ছাদিত অংশৰ মাজেৰে বৈদ্যুতিক ফ্লান্স কিমান?

[A]
$$\frac{q}{6\epsilon_0}$$

$$[B] \quad \frac{q}{24\epsilon_0}$$

$$[C], \frac{q'}{\epsilon_0}$$

$$[D] = \frac{q}{3\epsilon_0}$$

100. A charged particle of mass m and charge q with energy E enters a uniform transverse magnetic field B and describes a circular path. The magnitude of the angular path. magnetic field B and describes a circular path. The magnetide of the angular nomentum of the particle along the circular path is L. If the particle had energy 2E, m ভৰযুক্ত, q আধানযুক্ত, E শক্তিৰ এটা কণিকাই ইয়াৰ গতিৰ উলহ দিশত থকা সুষম B চুহকীয় প্ৰাৱলাৰ the angular momentum would have been

এখন ক্ষেত্ৰত প্ৰৱেশ কৰে আৰু এটা বৃত্তীয় পথেৰে ঘূৰিবলৈ ধৰে। বৃত্তীয় পথটোৰে কণিকটোৰ কৌণিক তৰবৈগৰ মান L. যদি কণিকাটোৰ শক্তি 2E হ'লহেতেন, ইয়াৰ কৌণিক তৰবেগৰ মান হ'লহেতেন and the tell leading to

29

CEE-2016/1-D

(G) (6)(0)(-18)